

Stepper Motors (Tin-Can & Hybrid) Rotary and Linear actuators

Piëzo Motors

1-2324

Introduction: Dynetics- dynamic in mechatronics

Dynetics, founded in 1994, with offices in Germany and the Netherlands assists engineers across Europe in selecting the best suitable motor for their mechatronic assignment.

Dynetics represents leading manufacturers for rotating or linear functions with various technologies: Our motors are available in different technologies, related specs, and with many features and options such as a gearhead, encoder, but can also be modified to suit your needs

- Rotating: Brushed-; brushless, stepper-, Servo-, piezo, synchronous-, torque-motors
- Linear: high precision lead/ball screws; linear shaft motors, stages, motors with integrated high precision lead screw an/or intelligence (driver, sensors, etc).

Many of our products can be "customized", like with double or modified shafts, encoders, altered windings, fitted with connectors per customer request. See also our electronic options (integrated or external) to drive the motor optimal at the most efficient way.

Equipment cooling:

Dynetics supports engineers in the selection of a suitable axial fans or radial blowers for your application. We represents a broad range of fans for an AC- or DC- power supply. The fans combine long life with high reliability. See for instance the L10 curves of selected fans showing 100.000 hrs at 20° C and 40.000 hrs at 60°C. Technologies can be combined with ball- or sleeve-bearing. Thanks to our close contacts with the engineering departments of the supplier we are involved with their continuous development of efficient and intelligent designs, suitable in a wide variety of applications.

Contact us also for customer specific solutions, like humidity protection, specific wirelength, connecor, etc.) Dynetics helps economizing your design by offering solutions with optimum price-performance ratio.

logistics and services:

our logistic centre is located in The Netherlands:

"not only perfect for a European Distribution Center, but also as part of a global supply chain" a logistic/warehouse solution in The Netherlands for various reasons:

- Central location within the European market / Gateway to Europe and worldwide.
- Excellent sea- and airport facilities, and distribution infrastructure with Main ports Schiphol Airport and Rotterdam port
- Efficient Cargo communication
- Close co-operation between carriers, customs, handling agents, forwarders and other parties involved
- Able to interface late cut-off times and short lead times
- International orientation
- Optimising the supply chain management,
- Maximizes fab utilizations
- Matches inventory levels with the customer's demand
- Drives towards the best possible internal cycle time and schedule performance
- Multilingual capabilities

For more details, please visit our website: www.dynetics.eu

Stepping motors:

We have two main groups according to magnet force source:

- tin-can steppers (Permanent steppers)
- hybrid stepper (2-, 3- or 5-Phase).

The shaft of a Stepper motor is moved by each pulse with a fixed angle and converts the input pulse into a precisely defined increment in the shaft position. These motors are generally best used for applications up to 1000 revolutions per minute. At higher speeds, a stepper motor starts to lose its torque. Stepper motors are therefore very suitable for applications where predictable torque and speed requirements are present. stepper motors offer a simpler and more cost-effective solution. By adding a gearbox or damper to a stepper motor can improve the motor performance by reducing the inertia ratio of the load, increasing the load torque, and reducing motor vibration.

Bipolar versus unipolar:

In the following overview, we divided the available stepper motors in bipolar and unipolar. Bipolar stepper motors are generally able to produce more torque than unipolar stepper motors, and are more efficient. However, they are more complicated to drive. The main difference between the two types of stepper motors has to do with the way that the wire winding is constructed.

The unipolar stepper motors, has one winding per phase, with a center tap. This allows the controlling circuit to operate the motor with current that flows always in the same direction. Therefore, there is no need to generate reverse current. Each time the phase is activated, only half of its coil is energized.

The bipolar stepper motor also has a single winding per phase and no centre tap. This means that when the phase is activated, the entire coil is energized. The result is that the bipolar motor is able to produce much more torque compared to the unipolar motor. But, the controlling circuit must be able to generate current that can move both ways through the coil, i.e. "regular" current and "reverse" current. As a result, the controlling circuit for a bipolar stepper motor is more complicated than that of a unipolar stepper motor. Bipolar motors have multiple (at least two) independent windings. A wire comes out of each of the winding's ends, so you get two wires per winding. Unipolar motors may also have multiple (more than two) windings. However, in addition to the ends of each winding are connected to wires, the middle attaches to a third wire. The absence of this third (common) wire means that bipolar motors are slightly easier to make.

Our motors are: Reach and RoHs compliant Certificated: UL, VDE; CE; ISO9001, ISO14001 Options: Customizations ; dampers, encoders, drivers controllers etc.

Index:

Options

permanent magnet (PM) stepper tin-can stepper motors have many advantages over other kinds of stepper motors. PM motors strike the perfect balance between efficiency and affordability, as they are low-inertia, low-resolution motors that are a low-priced

alternative to hybrid stepper motors in many applications. PM steper motors have a typical step angle between 3.75 and 18 degrees, and offer position resolution on the order of ±5 percent. Its structure demonstrates ferromagnetism, with alternating north and south poles set in a straight, parallel line to the rotor shaft. The rotor is moved through the action of permanent magnets, providing increased magnetic flux intensity. This intensity results in improved torque characteristics for the PM motor, compared to variable resistance step motors.

Nippon Pulse provides high-quality PM motors to industries and professionals all over the world. Take a look at our standard PM motors over the following pages to find the one that most closely fits your needs. Dynetics can work with you to make any customizations necessary to make our PM motors a perfect fit.

Product features of the stepper motor Several customization options available on all tin-can steppers

- Short time Prototyping
- Available with diameters from 10mm up to 55mm
- Holding torque between 1 and 180 mNm
- Rated voltage of 5V and 12V
- 24 or 48 steps per revolution
- Unipolar and bipolar windings

The tin-can stepper motors are available in the following versions

- as Flying lead joint type (PF)
- as Connector joint type (PFC)
- With gearhead

Model Number Explanation (for PF and PFC series)

PF(C)	- 42	Τ-	48	С	1	G	1/50
1	2	3	4	5	6	7	8

- 1 Series Designation PF: Flying lead joint type PFC: Connector joint type
- 2 Outer Diameter in mm
- 3 Type Blank: Standard T: Thin stack
 - H: High torque
- 4 Steps per Revolution 24: 15°/step 48: 7.5°/step 96: 3.75°/step
- 5 Coil Rating C: 12V unipolar D: 5V unipolar
 - P: 12V bipolar
 - Q: 5V bipolar

- 6 Magnet Material
 - 1: Ferrite Anisotropic
 - 3: Ferrite Isotropic
 - 4: Neodymium
- 6: Molded Neodymium* 7 - Gear Head Blank: No Gear Head
- G: Gear Head Integrated 8 - Gear Ratio
 - With geared models only

*Only applicable for PFC10 and PFC20T.

Ø10 mm rotary tin can stepping motor

Ø10mm											
type of winding	Model	Step angle	Voltage	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass		
		Deg.	v	Ω/Φ	mH/Φ	mN∙m	kg.m²	mm	g		
bipolar	PFC10-20R6	18	2,7	20	3,2	1	0,03 x 10 ⁷	10,2	5		

Ø20 mm rotary tin can stepping motor

Ø20mm									
type of winding	Model	Step angle	Voltage	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	v	Ω/Φ	mΗ/Φ	mN∙m	kg.m²	mm	g
bipolar	PFCU20	0,9	12	160	59	10	0,1 x 10 ⁷	20	25

Ø25 mm rotary tin can stepping motor

Ø25mm									
type of winding	Model	Step angle	Voltage	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	v	Ω/Φ	mΗ/Φ	mN∙m	kg.m ²	mm	g
bipolar	PFC25-48 C1	7,5	12	120	37	10	1 x 10 ⁷	26	35
bipolar	PFC25-48 C4	7,5	12	120	32	12	1 x 10 ⁷	26	35
bipolar	PFC25-48 D1	7,5	5	16	5	10	1 x 10 ⁷	26	35
bipolar	PFC25-48 D4	7,5	5	16	4,4	12	1 x 10 ⁷	26	35
bipolar	PFC25-48 P1	7,5	12	122	81	12	1 x 10 ⁷	26	35
bipolar	PFC25-48 P4	7,5	12	122	71	13	1 x 10 ⁷	26	35
bipolar	PFC25-48 Q1	7,5	5	15	9,7	12	1 x 10 ⁷	26	35
bipolar	PFC25-48 Q4	7,5	5	15	8,5	13	1 x 10 ⁷	26	35
unipolar	PFC25-24 C1	15	12	120	30	8	1 x 10 ⁷	26	35
unipolar	PFC25-24 C4	15	12	120	26,4	9	1 x 10 ⁷	26	35
unipolar	PFC25-24 D1	15	5	16	4,1	8	1 x 10 ⁷	26	35
unipolar	PFC25-24 D4	15	5	16	3,6	9	1 x 10 ⁷	26	35
unipolar	PFC25-24 P1	15	12	122	66	10	1 x 10 ⁷	26	35
unipolar	PFC25-24 P4	15	12	122	58	10	1 x 10 ⁷	26	35
unipolar	PFC25-24 Q1	15	5	15	7,9	10	1 x 10 ⁷	26	35
unipolar	PFC25-24 Q4	15	5	15	7	10	1 x 10 ⁷	26	35

Gearhear options:

Gear Ratio	6/25	1/5	3/25	1/10	2/25	1/15	3/50	1/20	
Ordinary Gear Strength		20r	mN∙m		50mN⋅m				
Destruction Gear Strength	60mN·m 150mN·m								

Gear Ratio	1/25	1/30	1/50	1/60	2/125	1/75		
Ordinary Gear Strength	70mN-m							
Destruction Gear Strength		210mN·m						

Gear Ratio	1/100	1/120	1/125	1/150	1/200	1/250	1/300
Ordinary Gear Strength				100mN⋅m			
Destruction Gear Strength				300mN∙m			

\emptyset 25 mm rotary tin can stepping motor with gearhead

Ø25mm											
type of winding	Model	Step angle	Voltage	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass		
		Deg.	v	Ω/Φ	mΗ/Φ	mN∙m	kg.m²	mm	g		
bipolar	PFCU25-24C1GM 1/18	1	6,5	32	16	50	0,5 x 10 ⁷	28	55		
bipolar	PFCU25-24D1GM 1/20	0,75	6,5	32	16	50	0,5 x 10 ⁷	28	55		
bipolar	PFCU25-24D1GM 1/30	0,5	6,5	32	16	50	0,5 x 10 ⁷	28	55		
bipolar	PFCU25-24C1GM 1/18	1	12,6	122	66	50	0,5 x 10 ⁷	28	55		
bipolar	PFCU25-24D1GM 1/20	0,75	12,6	122	66	50	0,5 x 10 ⁷	28	55		
bipolar	PFCU25-24D1GM 1/30	0.5	12.6	122	66	50	0.5 x 10 ⁷	28	55		

Ø30 mm rotary tin can stepping motor with gearhead

Ø30mm											
type of winding	Model	Step angle	Voltage	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass		
		Deg.	v	Ω/Φ	mΗ/Φ	mN∙m	kg.m²	mm	g		
bipolar	PFCU30-24V 4GM 3/25	1,8	6,9	30	26	100		25	75		
bipolar	PFCU30-24T 4GM 3/25	1,8	9,8	60	49	100		25	75		

Ø35 mm rotary tin can stepping motor

Ø35mm									
type of winding	Model	Step angle	Voltage	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	V	Ω/Φ	mΗ/Φ	mN∙m	kg.m ²	mm	g
bipolar	PF35-24P1	15	12	100	95	18	4,5 x 10 ⁷	20,6	80
bipolar	PF35-24Q1	15	5	17	14	18	4,5 x 10 ⁷	20,6	80
bipolar	PF35-48P1	7,5	12	100	124	25	4,5 x 10 ⁷	20,6	80
bipolar	PF35-48Q1	7,5	5	17	19	25	4,5 x 10 ⁷	20,6	80
Unipolar	PF35-48C1	7,5	12	90	48	20	4,5 x 10 ⁷	20,6	80
Unipolar	PF35-48D1	7,5	5	16	8,8	20	4,5 x 10 ⁷	20,6	80
Unipolar	PF35-24C1	15	12	90	37	15	4,5 x 10 ⁷	20,6	80
Unipolar	PF35-24D1	15	5	16	6,7	15	4,5 x 10 ⁷	20,6	80

					_				
Gear Ratio	6/25	1/5	3/25	1/10					
Ordinary Gear Strength		200	mN∙m						
Destruction Gear Strength		600	mN∙m]				
Gear Ratio	2/25	1/15	3/50	1/20	1/25				
Ordinary Gear Strength			250mN⋅m	1					
Destruction Gear Strength		750mN∙m							
Gear Ratio	1/30	1/50	1/60	2/125	1/75				
Ordinary Gear Strength			300mN·m	1					
Destruction Gear Strength			900mN⋅m	1					
Gear Ratio	1/100	1/120	1/125	1/150	1/200				
Ordinary Gear Strength	400mN·m								
Destruction Gear Strength				1200mN-r	n				

Ø35mm												
type of winding	Model	Step angle	Voltage	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass			
		Deg.	v	Ω/Φ	mΗ/Φ	mN∙m	kg.m²	mm	g			
bipolar	PF35T-48Q1	7,5	5	16	16	19	2,7 x 10 ⁷	15	77			
bipolar	PF35T-48Q4	7,5	5	16	5,5	22	2,7 x 10 ⁷	15	77			
bipolar	PF35T-24R1	7,5	12	72	60	19	2,7 x 10 ⁷	15	77			
bipolar	PF35T-24R1	7,5	12	72	53	22	2,7 x 10 ⁷	15	77			
Unipolar	PF35T-48C1	7,5	12	70	30	18	2,7 x 10 ⁷	15	77			
Unipolar	PF35T-48C4	7,5	12	70	26	24	2,7 x 10 ⁷	15	77			
Unipolar	PF35T-48D1	7,5	5	12	5,5	18	2,7 x 10 ⁷	15	77			
Unipolar	PF35T-48D4	7,5	5	12	4,8	24	2,7 x 10 ⁷	15	77			

Strength 100mN·m 200mN·m Ord					
	Ordinary Gear Strength 600mN·m		nN∙m		
on Gear Strength 300mN-m 600mN-m Des	Destruction Gear Strength			1800r	nN∙m
Ratio 1/40 1/50 1/60 1/75 1/90 1/100 1/120					
ry Gear Strength 300mN-m					
truction Gear Strength 900mN·m PF35	PF35T 13.5				
	1/100 1/100 1/105		12.00	1200 11	200

1/300

Gear Ratio	1/5	1/6	1/10	1/18	1/30	1/40	1/50	1/60	1/75	1/90	1/100	1/120	1/125	1/150	1/180	1/200	1/300
L	19.5	19.5	19.5	19.5	19.5	21.7	21.7	21.7	21.7	21.7	21.7	21.7	23.8	23.8	23.8	23.8	23.8

Ø42 mm rotary tin can stepping motor

Ø42mm									
type of winding	Model	Step angle	Voltage	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	v	Ω/Φ	mΗ/Φ	mN∙m	kg.m ²	mm	g
bipolar	PF42-24P1	15	12	76	74	41	16,8 x 10 ⁷	21,8	160
bipolar	PF42-24Q1	15	5	14	14	41	16,8 x 10 ⁷	21,8	160
bipolar	PF42-48P1	7,5	12	76	87	54	16,8 x 10 ⁷	21,8	160
bipolar	PF42-48P4	7,5	12	76	76,5	54	16,8 x 10 ⁷	21,8	160
bipolar	PF42-48Q1	7,5	5	14	16	54	16,8 x 10 ⁷	21,8	160
bipolar	PF42-48Q4	7,5	5	14	14	54	16,8 x 10 ⁷	21,8	160
unipolar	PF42-24C1	15	12	70	35	28	16,8 x 10 ⁷	21,8	160
unipolar	PF42-24D1	15	5	12	5,9	28	16,8 x 10 ⁷	21,8	160
unipolar	PF42-48C1	7,5	12	70	41	45	16,8 x 10 ⁷	21,8	160
unipolar	PF42-48C4	7,5	12	70	36	45	16,8 x 10 ⁷	21,8	160
unipolar	PF42-48D1	7,5	5	12	6,9	45	16,8 x 10 ⁷	21,8	160
unipolar	PF42-48D4	7,5	5	12	6,1	45	16.8 x 10 ⁷	21,8	160

Ø42mm									
type of winding	Model	Step angle	Voltage	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	v	Ω/Φ	mΗ/Φ	mN∙m	kg.m ²	mm	g
bipolar	PF42T-48P1	7,5	12	64	51	42	14,8 x 10 ⁷	14,9	105
bipolar	PF42T-48P4	7,5	12	64	44,9	42	11,4 x 10 ⁷	14,9	105
bipolar	PF42T-48Q1	7,5	5	12	11	42	14,8 x 10 ⁷	14,9	105
bipolar	PF42T-48Q4	7,5	5	12	9,7	42	11,4 x 10 ⁷	14,9	105
bipolar	PF42T-96P1	3,75	12	64	51	49	14,8 x 10 ⁷	14,9	105
bipolar	PF42T-96P4	3,75	12	64	44,9	49	11,4 x 10 ⁷	14,9	105
bipolar	PF42T-96Q1	3,75	5	12	12	49	14,8 x 10 ⁷	14,9	105
bipolar	PF42T-96Q4	3,75	5	12	10,5	49	11,4 x 10 ⁷	14,9	105
unipolar	PF42T-48C1	7,5	12	60	25	34	14,8 x 10 ⁷	14,9	105
unipolar	PF42T-48C4	7,5	12	60	22	34	11,4 x 10 ⁷	14,9	105
unipolar	PF42T-48D1	7,5	5	10	4	34	14,8 x 10 ⁷	14,9	105
unipolar	PF42T-48D4	7,5	5	10	3,5	34	11,4 x 10 ⁷	14,9	105
unipolar	PF42T-96C1	3,75	12	60	29	30	14,8 x 10 ⁷	14,9	105
unipolar	PF42T-96C4	3,75	12	60	25,5	30	11,4 x 10 ⁷	14,9	105
unipolar	PF42T-96D1	3,75	5	10	4,6	36	14,8 x 10 ⁷	14,9	105
unipolar	PF42T-96D4	3,75	5	10	4	36	11,4 x 10 ⁷	14,9	105

Ø42mm									
type of winding	Model	Step angle	Voltage	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	v	Ω/Φ	mΗ/Φ	mN∙m	kg.m²	mm	g
bipolar	PF42H-48P1	7,5	12	70	80	70	27 x 10 ⁷	21,8	160
bipolar	PF42H-48Q1	7,5	5	12	13	70	27 x 10 ⁷	21,8	160
bipolar	PF42H-48Q4	7,5	5	13	12	70	27 x 10 ⁷	21,8	160
unipolar	PF42H-48C1	7,5	12	70	39	50	27 x 10 ⁷	21,8	160
unipolar	PF42H-48D1	7,5	5	12	6,6	50	27 x 10 ⁷	21,8	160

Gearhead PF42

Gear Ratio	6/25	5 1/5 3/25 1/10 2/25 1/15 3/50 1/20 1/							1/25	
Ordinary Gear Strength		200	mN-m		250mN-m					
Destruction Gear Stength		600	mN-m		750mN-m					
Gear Ratio	1/3	0 1	/50	1/60	2/125	1/75				
Ordinary Gear Strength			3	00mN·m						
Destruction Gear Stength	i -		9	00mN·m						
Gear Ratio	1/1	00	1/120	1/125	1/150	1/20	0 1/2	50	/300	
Ordinary Gear Strength		400mN·m								
Destruction Gear Stength	i -	1200mN·m								

Gearhead PF(C)42T

Gear Ratio	6/25	1/5	3/25	1/10	2/25	1/15	3/50	1/20	1/25				
Ordinary Gear Strength		200	mN-m			1	250mN-	m					
Destruction Gear Stength	ion Gear 600mN-m 750mN-m							750mN-m					
Gear Ratio		1/30	1/50	1/60	2/125 1/75								
Ordinary Gear Strong	th			300mN	ł m								
Destruction Gear Ster	ngth			900mN	ŀm								
Gear Ratio		100	1/120	1/125	1/15	0 1/2	100	1/250	1/300				
Ordinary Gear Streng	th				400mN-m								
Destruction Gear Stength					1200mN-m								

Gearhead PF42H

Gear Ratio	6/25	1/5	3/25	1/10	2/25 1/15 3/50 1/20 1/					
Ordinary Gear Strength		200r	nN-m			2	250mN-n	n		
Destruction Gear Stength		600r	nN-m			750mN-m				
Gear Ratio	1/30	1/50	1/0	50 3	2/125	1/75				
Ordinary Gear Strength		300mN-m								
Destruction Gear Stength			900r	nN∙m						
Gear Ratio	1/100	1/1	20 1	/125	1/150	1/200	1/25	0 1/3	800	
Ordinary Gear Strength	400mN-m									
Destruction Gear Stength	1200mN·m									

Ø55 mm rotary tin can stepping motor

Ø55mm									
type of winding	Model	Step angle	Voltage	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	v	Ω/Φ	mH/Φ	mN∙m	kg.m²	mm	g
bipolar	PF55-48P1	7,5	12	40	84	150	40 x 10 ⁷	26	300
bipolar	PF55-48P4	7,5	12	40	73,9	150	35 x 10 ⁷	26	300
bipolar	PF55-48Q1	7,5	5	6,75	12	150	40 x 10 ⁷	26	300
bipolar	PF55-48Q4	7,5	5	7	10,5	150	40 x 10 ⁷	26	300
unipolar	PF55-48C1	7,5	12	36	37	120	40 x 10 ⁷	26	300
unipolar	PF55-48C4	7,5	12	36	32,5	120	35 x 10 ⁷	26	300
unipolar	PF55-48D1	7,5	5	5	4,6	120	40 x 10 ⁷	26	300
unipolar	PF55-48D4	7,5	5	5	4	120	35 x 10 ⁷	26	300

Ø55mm									
type of winding	Model	Step angle	Voltage	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	v	Ω/Φ	mΗ/Φ	mN∙m	kg.m²	mm	g
bipolar	PF55H-48C1	7,5	12	36	84	180	97x 10 ⁷	26	300
bipolar	PF55H-48Q1	7,5	5	5	12	180	97x 10 ⁷	26	300
unipolar	PF55H-48C1	7,5	12	36	30	150	97x 10 ⁷	26	300
unipolar	PF55H-48D1	7,5	5	5	4,4	150	97x 10 ⁷	26	300

Gearhead PFC55

Gear Ratio	6/25	3/50	1/20									
Ordinary Gear Strength				400n	nN∙m							
Gear Ratio	1/25	1/30	1/50	1/60	2/125	1/75						
Ordinary Gear Strength		700r	nN∙m		1000r	nN∙m						
Gear Ratio	3/250	3/250 1/100 1/125 1/150 1/250 1/300										
Ordinary Gear Strength												

Gearhead PF55H

Gear Ratio	1/3	1/5	;	2/15	1/10 2/25		1/15	1/20
Ordinary Gear Strength	400m	N∙m	m 500mN-m				600mN-m	800mN-m
Gear Ratio	1/25			1/30	1/50	1/60		
Ordinary Gear Strength	900mN	ŀm	110	0mN∙m	1600)mN∙m		
Gear Ratio	1/75	1/1	100	1/125	1/150			
Ordinary Gear Strength		2500mN·m						

Dynetics B.V. De Rijn 12 5684PJ Best, The Netherlands Tel: +31-(0)499-371007 | Fax: +31-(0)499-372008

Dynetics GmbH Klostergasse 6 D-41334 Nettetal-Kaldenkirchen, Deutschland Tel : +49-(0)2157-128990 | Fax: +49-(0)2157-128999

e-Mail: info@dynetics.eu www.dynetics.eu

HYBRIDS (2-Phase):

36mm with 0.9° Flat hybrid stepper motor

With the development of surveillance cameras in mind, a complete New Series 36mm x 0.9° stepper motors has been developed by Shinano Kenshi. Thanks to its favourable price and performance ratio, this series of motors is also universally applicable for many other applications.

frame size:	Ø36mm									
wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Mass	Length
		Deg.	V	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm²	g	mm
bipolar	SST36C0030	0.9	5.0	0.3	16.80	8.50	41.2	7.3	50	12.35
bipolar	SST36C0050	0.9	3.2	0.5	6.40	3.16	41.2	7.3	50	12.35
bipolar	SST36C0060	0.9	2.6	0.6	4.30	2.23	41.2	7.3	50	12.35
bipolar	SST36C0080	0.9	2.0	0.8	2.53	1.24	41.2	7.3	50	12.35
bipolar	SST36C1030	0.9	8.2	0.3	27.20	20.70	100	19.6	90	19.7
bipolar	SST36C1050	0.9	5.2	0.45	11.50	9.00	100	19.6	90	19.7
bipolar	SST36C1060	0.9	4.1	0.6	6.90	5.35	100	19.6	90	19.7
bipolar	SST36C1080	0.9	3.3	0.8	4.10	3.16	100	19.6	90	19.7

20mm hybrid stepper motor (NEMA 10)

motor is ideal for motion control applications where the benefits of smaller size with high torque are essential. They feature superior response characteristics and function in a wide variety of applications.

frame size: 20mm (NEMA 8)										
wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Mass	Length
		Deg.	v	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm²	g	mm
bipolar	PJE20T-28E14	1,8	2,47	0,95	2,6	0,8	22	2	60	28
bipolar	pJE20T-40E14	1,8	2,47	0,95	4,16	1,55	38	2	60	28

28mm hybrid stepper motor (NEMA11)

motor is ideal for motion control applications where the benefits of smaller size with high torque are essential. They feature superior response characteristics and function in a wide variety of applications.

frame size: 28m	nm (NEMA 11)									
wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Mass	Length
		Deg.	v	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm²	g	mm
bipolar	PJP28T-32E16	1,8	2,66	0,95	2,8	1	45	9	110	31,5
bipolar	PJP28T-40E16	1,8	3,23	0,95	3,4	1,5	60	12	150	39,5
bipolar	PJP28T-45E16	1,8	3,71	0,95	3,9	1,5	75	14	170	44,5
bipolar	KV2832-N2B901	1,8	1,95	1,5	1,3	0,9	85	9,2	110	32
bipolar	PJP28T-51E16	1,8	4,37	0,95	4,6	1,7	90	17	195	50,5
bipolar	DYNSST28D110X	1,8	1,89	1.3	1,45	1,25	92,2	8	110	32
bipolar	KV2841-N2B901	1,8	2,55	1,5	1,7	1	120	15	140	41
bipolar	DYNSST28D210X	1,8	2,21	1.3	1,7	1,2	123	12	145	39.7
bipolar	KV2851-N2B901	1,8	3,15	1,5	2,1	1,7	165	22	190	51
bipolar	DYNSST28D310X	1,8	2,93	1.3	2,25	1,7	183	17	195	51.6
unipolar	KV2832-N2U951	1,8	3	1	3	1	65	9,2	110	32
unipolar	KV2841-N2U951	1,8	3,6	1	3,8	1,2	85	15	140	41
unipolar	KV2851-N2U951	1,8	3,8	1	4,3	1,7	120	22	190	51

Dynetics Dynamic in mechatronics

35mm hybrid stepper motor (NEMA11)

High torque low vibraton, long liftime

frame size: 35m	nm (NEMA 14)										
wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Mass	Length	Al
		Deg.	v	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm²	g	mm	
bipolar	DYNSST35D4225	1.8	2.75	2.2	1.25	1.15	415	41	280	50.5	
bipolar	DYNSST35D4205	1.8	3.00	2.0	1.50	1.70	450	41	280	50.5	a second
bipolar	DYNSST35D4185	1.8	3.15	1.8	1.75	2.40	465	41	280	50.5	
bipolar	DYNSST35D4165	1.8	3.60	1.6	2.25	3.90	515	41	280	50.5	
bipolar	PJE35T-26E14	1.8	2.95	0,95	3,1	1,99	70	8	100	26	
bipolar	PJE35T-37E14	1.8	4,56	0,95	4,8	4,8	180	8	100	36,5	
bipolar	PJE35T-53E14	1.8	6,94	0,95	7,3	8,9	310	8	100	53	

A	
	2
	S

frame size: Ø36	imm									
wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Mass	Length
		Deg.	v	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm²	g	mm
bipolar	SST36C0030	0.9	5.0	0.3	16.80	8.50	41.2	7.3	50	12.35
bipolar	SST36C0050	0.9	3.2	0.5	6.40	3.16	41.2	7.3	50	12.35
bipolar	SST36C0060	0.9	2.6	0.6	4.30	2.23	41.2	7.3	50	12.35
bipolar	SST36C0080	0.9	2.0	0.8	2.53	1.24	41.2	7.3	50	12.35
bipolar	SST36C1030	0.9	8.2	0.3	27.20	20.70	100	19.6	90	19.7
bipolar	SST36C1050	0.9	5.2	0.45	11.50	9.00	100	19.6	90	19.7
bipolar	SST36C1060	0.9	4.1	0.6	6.90	5.35	100	19.6	90	19.7
bipolar	SST36C1080	0.9	3.3	0.8	4.10	3.16	100	19.6	90	19.7

39mm hybrid stepper motor (NEMA16)

High torque low vibration, long lifetime

frame size: 39n	nm (NEMA 16)									
wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Mass	Length
		Deg.	v	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm ²	g	mm
bipolar	KH39EM2-801	1.8	5,6	0,4	14	6,4	59	14	110	20,8
bipolar	KH39FM2-801	1.8	6,3	0,42	15	8,5	88	19	160	27
bipolar	KH39GM2-801	1.8	5,6	0,47	13,6	9,8	127	27	240	31
unipolar	KH39EM2-851	1.8	3,6	0,6	6	5,5	78	14	110	20,8
unipolar	KH39FM2-851	1.8	4	0,67	6	6,8	118	19	160	27
unipolar	KH39GM2-851	1.8	4,6	0,65	7	9,8	157	27	240	31

42mm hybrid stepper motor (NEMA17)

High torque low vibration, long lifetime

frame size: 4	2mm (NEMA 17)									
wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Mass	Length
		Deg.	v	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm ²	g	mm
bipolar	DYNSHSST42C103X	0,9	5,6	0,3	18,7	34,8	177	33	34	230
bipolar	DYNSHSST42C106X	0,9	3,2	0,6	5,4	8,6	184	33	34	230
bipolar	DYNSHSST42C110X	0,9	1,2	1	2,2	3,9	196	33	34	230
bipolar	KV4234-N4B801	4,09	2,52	1,4	1,8	2,7	200	42	34	210
bipolar	KV4234-N4B801	4,09	2,94	1,4	2,1	4,2	215	59	39	260
bipolar	KH4234-B95101	1.8	3,41	1,1	3,1	4,4	250	38		34
bipolar	KH4234-B95101	1.8	3,41	1,1	3,1	4,4	250	38	34	
bipolar	KV4239-T4B801	4,09	2,94	1,4	2,1	3,8	260	59	39	260
bipolar	KV4242-N4B801	4,09	3,22	1,4	2,3	4,5	290	69	42	320
bipolar	PJE42T-34D14	1.8	2,9	1,2	2,1	3,7	300	54	34	300
bipolar	DYNSHSST42C204X	0,9	6	0,4	15	34,5	312	56	40	290
bipolar	DYNSHSST42C208X	0,9	3	0,8	3,8	9,2	324	56	40	290
bipolar	DYNSHSST42C212X	0,9	2	1,2	1,7	4,5	324	56	40	290
bipolar	KF4234-EN2B801	1,8	4,1	1	4,1	5,3	330	70	34	230
bipolar	DYNSHSST42C304X	0,9	6,3	0,4	15,7	32	334	72	47.5	360
bipolar	KH4238-B95101	1.8	3,24	1,2	2,7	4,9	340	48		38
bipolar	KH4238-B95101	1.8	3,24	1,2	2,7	4,9	340	48	38	
bipolar	DYNSHSST42C312X	0,9	2	1,2	1,7	4	346	72	47.5	360
bipolar	DYNSHSST42C308X	0,9	3,2	0,8	4	9,7	358	72	47.5	360
bipolar	PJE42T-48D14	1,8	4	1,2	3,1	7,2	370	77	49	360
bipolar	KH4242-B95101	1.8	3,41	1,1	3,1	6,9	380	59		42
bipolar	KH4242-B95101	1.8	3,41	1,1	3,1	6,9	380	59	42	
bipolar	KV4248-N4B801	4,09	3,78	1,4	2,7	5	390	79	48	370
bipolar	KF4239-EN2B801	1,8	3,08	1,4	2,2	2,7	400	100	39	290
bipolar	KF4239-EN2B802	1,8	4,85	0,85	5,7	6,9	400	100	39	290
bipolar	PJE42T-40D14	1.8	3,6	1,2	2,5	6	400	54	40	300
bipolar	KF4242-EN2B801	1,8	3,36	1,4	2,4	4	460	145	42	330
bipolar	KF4242-EN2B802	1,8	5,36	0,85	6,3	10	460	145	42	330
bipolar	KH4248-B95101	1.8	3	1,5	2	3,6	480	78		48
bipolar	KH4248-B95101	1.8	3	1,5	2	3,6	480	78	48	
bipolar	KH4254-B95101	1.8	3,22	1,4	2,3	5	570	98		54
bipolar	KH4254-B95101	1.8	3,22	1,4	2,3	5	570	98	54	

42mm hybrid stepper motor (NEMA17)

High torque low vibration, long lifetime

wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	v	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm ²	mm	g
unipolar	KV4234-N4U801	4,09	2,57	1,35	1,9	1,4	150	42	34	210
unipolar	KV4239-T4U801	4,09	3,08	1,4	2,2	2,1	160	59	39	260
unipolar	DYNSHSST42C103XU	0,9	11.2	0,3	37,4	34,8	177	33	34	230
unipolar	DYNSHSST42C106XU	0,9	6,3	0,6	10,5	8,6	184	33	34	230
unipolar	KH4234-B90101	1.8	2,97	1,1	2,7	2,1	190	38		34
unipolar	KH4234-B90101	1.8	2,97	1,1	2,7	2,1	190	38	34	
unipolar	DYNSHSST42C110XU	0,9	4,4	1	4,4	3,9	196	33	34	230
unipolar	KV4239-N4U801	4,09	3,08	1,4	2,2	1,9	200	59	39	260
unipolar	KV4234-N2U801	1,8	2,97	1,1	2,7	2,1	210	42	34	210
unipolar	KV4239-T2U801	1,8	3,36	1,2	2,8	3,2	220	59	39	260
unipolar	KV4242-N4U801	4,09	3,5	1,4	2,5	2,4	230	69	42	320
unipolar	KH4238-B90101	1.8	3,08	1,4	2,2	1,9	260	48		38
unipolar	KH4238-B90201	1.8	3,6	1,2	3	2,8	260	48		38
unipolar	KH4238-B90101	1.8	3,08	1,4	2,2	1,9	260	48	38	
unipolar	KH4238-B90201	1.8	3,6	1,2	3	2,8	260	48	38	
unipolar	KV4248-N4U801	4,09	4,05	1,35	3	2,7	280	79	48	370
unipolar	KV4239-N2U801	1,8	3,36	1,2	2,8	2,9	280	59	39	260
unipolar	KH4242-B90101	1.8	3,25	1,3	2,5	2,6	300	59		42
unipolar	KH4242-B90201	1.8	3,74	1,1	3,4	4	300	59		42
unipolar	KH4242-B90101	1.8	3,25	1,3	2,5	2,6	300	59	42	
unipolar	KH4242-B90201	1.8	3,74	1,1	3,4	4	300	59	42	
unipolar	DYNSHSST42C204XU	0,9	12	0,4	30	34,5	312	56	40	290
unipolar	KV4242-N2U801	1,8	3,54	1,2	3	3,2	320	69	42	320
unipolar	DYNSHSST42C208XU	0,9	6,2	0,8	7,7	9,2	324	56	40	290
unipolar	DYNSHSST42C212XU	0,9	4,1	1,2	3,4	4,5	324	56	40	290
unipolar	DYNSHSST42C304XU	0,9	12,6	0,4	31,5	32	334	72	47.5	360
unipolar	DYNSHSST42C312XU	0,9	4,1	1,2	3,4	4	346	72	47.5	360
unipolar	KH4248-B90101	1.8	3,6	1,2	3	2,6	350	78		48
unipolar	KH4248-B90101	1.8	3,6	1,2	3	2,6	350	78	48	
unipolar	DYNSHSST42C308XU	0,9	6,4	0,8	8	9,7	358	72	47.5	360
unipolar	KV4248-N2U801	1,8	4,08	1,2	3,4	3,7	410	79	48	370
unipolar	KH4254-B90101	1.8	4,2	1,2	3,5	4,1	460	98		54
unipolar	KH4254-B90101	1.8	4,2	1,2	3,5	4,1	460	98	54	

Non-rare earth magnet models

frame size:	42 mm (NEMA 17)									
wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	V	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm ²	mm	g
bipolar	KV4234-N2B801	1,8	2,76	1,2	2,3	3,6	260	42	34	210
bipolar	KV4234-N2B802	1,8	4	0,8	5	7,5	260	42	34	210
bipolar	KV4239-T2B801	1,8	2,94	1,4	2,1	4,5	300	59	39	260
bipolar	KV4239-T2B802	1,8	4,88	0,8	6,1	14	300	59	39	260
bipolar	KV4239-N2B801	1,8	2,94	1,4	2,1	4,1	370	59	39	260
bipolar	KV4239-N2B802	1,8	4,88	0,8	6,1	14	370	59	39	260
bipolar	KV4242-N2B801	1,8	3,72	1,2	3,1	5	420	69	42	320
bipolar	KV4248-N2B801	1,8	3,9	1,3	3	6,1	530	79	48	370
unipolar	KV4234-N4U801	4,09	2,57	1,35	1,9	1,4	150	42	34	210
unipolar	KV4234-T4U801	4,09	3,08	1,4	2,2	2,1	160	59	39	260
unipolar	KV4239-N4U801	4,09	3,08	1,4	2,2	1,9	200	59	39	260
unipolar	KV4234-N2U801	1,8	2,97	1,1	2,7	2,1	210	42	34	210
unipolar	KV4239-T2U801	1,8	3,36	1,2	2,8	3,2	220	59	39	260
unipolar	KV4242-N4U801	4,09	3,5	1,4	2,5	2,4	230	69	42	320
unipolar	KV4239-N2U801	1,8	3,36	1,2	2,8	2,9	280	59	39	260
unipolar	KV4248-N4U801	4,09	4,05	1,35	3	2,7	280	79	48	370
unipolar	KV4242-N2U801	1,8	3,54	1,2	3	3,2	320	69	42	320
unipolar	KV4248-N2U801	1.8	4.08	1.2	3.4	3.7	410	79	48	370

Dynetics B.V. De Rijn 12 5684PJ Best, The Netherlands Tel: +31-(0)499-371007 | Fax: +31-(0)499-372008

Dynetics GmbH Klostergasse 6 D-41334 Nettetal-Kaldenkirchen, Deutschland Tel : +49-(0)2157-128990 | Fax: +49-(0)2157-128999

e-Mail: info@dynetics.eu www.dynetics.eu

56mm hybrid stepper motor (NEMA18)

High torque low vibration, long lifetime

frame size: 56	mm (NEMA 23)									
wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	v	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm²	mm	g
bipolar	DYNSHSTA-56D1005	1,8	4,2	1	4,2		560	125	38,5	420
bipolar	DYNSHSTA-56D1003	1,8	2	2	0,98		570	125	38,5	420
bipolar	DYNSHSTA-56D1001	1,8	1,5	3	0,5		580	125	38,5	420
bipolar	DYNSHSTA-56D1006	1,8	1,1	4,2	0,25		770	125	38,5	420
bipolar	DYNSHSTA-56D1010	1,8	2,9	1,4	2,1		770	125	38,5	420
bipolar	KH5640-B95101	1,8	2,4	2	1,2	3,1	780	170	40	460
bipolar	KH5640-B95201	1,8	3,5	1,4	2,5	6	780	170	40	460
bipolar	DYNSHSTA-56D1008	1,8	1,4	2,8	0,49		780	125	38,5	420
bipolar	DYNSHSTA-59D110X	1,8	3,3	1,4	2,35	7,5	870	145	42	510
bipolar	DYNSHSTA-59D115X	1,8	2,2	2,1	1,05	3,4	870	145	42	510
bipolar	DYNSHSTA-59D130X	1,8	1,3	4,2	0,31	0,9	870	145	42	510
bipolar	DYNSHSTA-59D120X	1,8	1,8	2,8	0,65	2	880	145	42	510
bipolar	DYNSHSTA-59D125X	1,8	1,5	3,5	0,43	1,3	890	145	42	510
bipolar	DYNSHSTA-56D3001	1,8	2	3	0,66		1010	225	48	570
bipolar	DYNSHSTA-56D3005	1,8	5,5	1	5,5		1010	225	48	570
bipolar	DYNSHSTA-56D3003	1,8	2,5	2	1,26		1030	225	48	570
bipolar	DYNSHSTA-59D210X	1,8	3,9	1,4	2,75	9,2	1200	210	48,5	620
bipolar	DYNSHSTA-59D215X	1,8	2,5	2,1	1,2	4,1	1200	210	48,5	620
bipolar	DYNSHSTA-59D230X	1,8	1,4	4,2	0,34	1,1	1200	210	48,5	620
bipolar	DYNSHSTA-59D220X	1,8	2	2,8	0,7	2,4	1220	210	48,5	620
bipolar	DYNSHSTA-59D225X	1,8	1,7	3,5	0,48	1,6	1240	210	48,5	620
bipolar	DYNSHSTA-56D3006	1,8	1,4	4,2	0,33		1280	225	48	570
bipolar	DYNSHSTA-56D3010	1,8	3,9	1,4	2,75		1280	225	48	570
bipolar	DYNSHSTA-56D3008	1,8	1,8	2,8	0,63		1300	225	48	570
bipolar	KH5652-B95101	1,8	3,36	2	1,68	4,5	1310	310	52	650
bipolar	KH5652-B95201	1,8	4,9	1,4	3,5	<mark>8,8</mark>	1310	310	52	650
bipolar	DYNSHSTA-59D310X	1,8	4,4	1,4	3,15	11,1	1410	245	54,5	710
bipolar	DYNSHSTA-59D315X	1,8	2,9	2,1	1,4	5,1	1410	245	54,5	710
bipolar	DYNSHSTA-59D330X	1,8	1,7	4,2	0,41	1,3	1410	245	54,5	710
bipolar	DYNSHSTA-59D320X	1,8	2,4	2,8	0,85	3	1440	245	54,5	710
bipolar	DYNSHSTA-59D325X	1,8	1,9	3,5	0,55	2	1460	245	54,5	710
bipolar	DYNSHSTA-56D5005	1,8	3,3	1	8,9		1910	460	73,5	990
bipolar	DYNSHSTA-56D5003	1,8	4	2	2		1940	460	73,5	990
bipolar	DYNSHSTA-56D5001	1,8	3,3	3	1,1		1960	460	73,5	990
bipolar	KH5674-B95101	1,8	5,2	2	2,6	7,2	2270	530	74	1000
bipolar	KH5674-B95201	1,8	7,42	1,4	5,3	13,9	2270	530	74	1000
bipolar	DYNSHSTA-59D510X	1,8	6,7	1,4	4,8	19	2400	470	77,5	1110
bipolar	DYNSHSTA-59D515X	1,8	4,4	2,1	2,1	8,4	2400	470	77,5	1110
bipolar	DYNSHSTA-59D530X	1,8	2,5	4,2	0,6	2,2	2400	470	77,5	1110
bipolar	DYNSHSTA-59D520X	1,8	3,5	2,8	1,25	4,9	2440	470	77,5	1110
bipolar	DYNSHSTA-56D5006	1,8	2,3	4,2	0,55		2520	460	73,5	990
bipolar	DYNSHSTA-56D5010	1,8	6,2	1,4	4,45		2520	460	73,5	990
bipolar	DYNSHSTA-56D5008	1,8	2,8	2,8	1		2560	460	73,5	990
bipolar	DYNSHSTA-59D525X	1,8	3	3,5	0,85	3,3	2580	470	77,5	1110

wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	v	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm²	mm	g
unipolar	PJP56T-44A16	1,8	2,8	2	1,4	1,5	400	120	42,5	470
unipolar	PJP56T-44B16	1,8	5,7	5,7	5,7	5,6	400	120	43,5	470
unipolar	DYNSHSST56C110XU	0,9	5,3	1	5,3	7	425	120	39,5	450
unipolar	DYNSHSST56C120XU	0,9	2,6	2	1,3	1,8	460	120	39,5	450
unipolar	DYNSHSST56C130XU	0,9	1,53	3	0,51	0,7	460	120	39,5	450
unipolar	KH5640-B90101	1,8	1,75	3	0,58	0,92	680	170	40	460
unipolar	KH5640-B90201	1,8	2,7	2	1,35	2	680	170	40	460
unipolar	PJP56T-55A16	1,8	3,6	3,6	1,8	3,2	850	280	55	700
unipolar	PJP56T-55B16	1,8	7,4	7,4	7,4	15	850	280	55	700
unipolar	DYNSHSST56C310XU	0,9	5,8	1	5,8	13	1029	306	54,5	710
unipolar	DYNSHSST56C320XU	0,9	3,2	2	1,6	3,5	1029	306	54,5	710
unipolar	DYNSHSST56C330XU	0,9	2,25	3	0,75	1,8	1029	306	54,5	710
unipolar	KH5652-B90101	1,8	2,28	3	0,76	1,4	1140	310	52	650
unipolar	KH5652-B90201	1,8	3,6	2	1,8	3	1140	310	52	650
unipolar	PJP56T-78A16	1,8	4,5	4,5	2,25	3,8	1300	480	77,5	1000
unipolar	PJP56T-78B16	1,8	8,6	8,6	8,6	15,2	1350	480	77,5	1000
unipolar	DYNSHSST56C510XU	0,9	8,5	1	8,5	18	1569	470	76	1100
unipolar	DYNSHSST56C520XU	0,9	4,8	2	2,4	5	1569	470	76	1100
unipolar	DYNSHSST56C530XU	0,9	3,3	3	1,1	2,5	1569	470	76	1100
unipolar	KH5674-B90101	1,8	3,48	3	1,16	2,2	1970	530	74	1000
unipolar	KH5674-B90201	1,8	5,4	2	2,7	4,9	1970	530	74	1000

Mass

g 520 720

1060

wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Length			
		Deg.	v	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm²	mm			
bipolar	PJE57T-46F14	1,8	1,71	3	0,57	1,24	800	180	45,5			
bipolar	PJE57T-56N14	1,8	1,76	4	0,44	1,4	1200	280	55,5			
bipolar	PJE57T-77R14	1,8	2	5	0,4	1,8	2000	480	76,5			

60mm hybrid stepper motor (NEMA 24)

57mm hybrid stepper motor

frame size: 60mm (NEMA 24)										
wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	v	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm ²	mm	g
bipolar	PJE60T-56F14	1,8	2,25	3	0,75	2,28	1280	340	55,8	800
bipolar	KH6054-B9510	1,8	3,08	2,8	1,1	3,3	1950	520	54	830
bipolar	PJE60T-56N14	1,8	2,4	4	0,6	1,9	2200	490	68,3	1000
bipolar	KH6065-B9510	1,8	3,92	2,8	1,4	3,8	2400	680	65	1020
bipolar	PJE60T-56R14	1,8	2,15	5	0,43	1,7	3000	690	85,3	1300
unipolar	DYNSHSST60D110X	1,8	5,9	1	5,92	9,2	850	280	46,3	620
unipolar	DYNSHSST60D120X	1,8	3	2	1,5	2,5	880	280	46,3	620
unipolar	DYNSHSST60D130X	1,8	2,3	3	0,77	1,1	920	280	46,3	620
unipolar	DYNSHSST60D310X	1,8	7,3	1	7,33	14,5	1320	440	55,8	880
unipolar	DYNSHSST60D320X	1,8	3,8	2	1,9	3,9	1340	440	55,8	880
unipolar	DYNSHSST60D330X	1,8	2,8	3	0,94	1,8	1350	440	55,8	880
unipolar	KH6054-B9010	1,8	3	3	1	1,4	1450	520	54	830
unipolar	KH6054-B9020	1,8	4,6	2	2,3	3,4	1450	520	54	830
unipolar	KH6065-B9010	1,8	3,3	3	1,1	1,5	1750	680	65	1020
unipolar	KH6065-B9020	1,8	5 <mark>,</mark> 6	2	2,8	3,7	1750	680	65	1020
unipolar	DYNSHSST60D410X	1,8	9,2	1	9,2	17,4	1790	590	67,8	1020
unipolar	DYNSHSST60D420X	1,8	4,8	2	2,4	4,9	1850	590	67,8	1020
unipolar	DYNSHSST60D430X	1,8	3,6	3	1,19	2,2	1910	590	67,8	1020
unipolar	DYNSHSST60D510X	1,8	12,6	1	12,6	29	2560	920	87,8	1400
unipolar	DYNSHSST60D520X	1,8	6,4	2	3,2	8	2690	920	87,8	1400
unipolar	DYNSHSST60D530X	1,8	4,7	3	1,55	3,7	2800	920	87,8	1400

86mm hybrid stepper motor (NEMA 34)

frame size: 86	mm (NEMA 34)									
wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	v	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm²	mm	g
bipolar	DYNSHSST86D0205	1,8	3,8	2	1,9	9,5	2660	1170	62,5	1710
bipolar	DYNSHSST86D0405	1,8	2,2	4	0,55	2,5	2660	1170	62,5	1710
bipolar	DYNSHSST86D0605	1,8	1,5	6	0,24	1,1	2660	1170	62,5	1710
bipolar	KH86QM2-951	1,8	5,04	1,4	3,6	23	3300	1800	66	2000
bipolar	KH86QM2-952	1,8	2,99	3,18	0,94	4,5	3300	1800	66	2000
bipolar	DYNSHSST86D1205	1,8	4,2	2	2,1	13	3880	1630	68,1	2000
bipolar	DYNSHSST86D1405	1,8	2,4	4	0,6	3,4	3880	1630	68,1	2000
bipolar	DYNSHSST86D1605	1,8	1,6	6	0,27	1,5	3880	1630	68,1	2000
bipolar	KH86RM2-951	1,8	5,6	1,4	4,2	31	4000	2300	74	2500
bipolar	KH86RM2-952	1,8	3,12	3,18	1	5,9	4000	2300	74	2500
bipolar	PJE86T-74H14	1,8	2,7	4,5	0,6	4,5	4500	1800	74	2100
bipolar	KH86TM2-951	1,8	7,84	1,4	5,6	47,5	6400	3700	96	3000
bipolar	KH86TM2-952	1,8	4,2	3,18	1,32	9,1	6400	3700	96	3000
bipolar	DYNSHSST86D3205	1,8	7	2	3,5	28	7290	3200	101,5	2900
bipolar	DYNSHSST86D3405	1,8	3,6	4	0,9	7,1	7290	3200	101,5	2900
bipolar	DYNSHSST86D3605	1,8	2,4	6	0,4	3,3	7290	3200	101,5	2900
bipolar	PJE86T-112J14	1,8	3,12	6	0,52	4,8	8200	3600	112	3600
bipolar	KH86WM2-951	1,8	10,64	1,4	7,6	68	9300	5500	127	4500
bipolar	KH86WM2-952	1,8	5,32	2,8	1,9	14	9300	5500	127	4500
bipolar	DYNSHSST86D5205	1,8	9	2	4,5	41	10600	4800	132	4000
bipolar	DYNSHSST86D5405	1,8	4,8	4	1,2	10,5	10600	4800	132	4000
bipolar	DYNSHSST86D5605	1,8	2,9	6	0,48	4,1	10600	4800	132	4000
unipolar	KH86QM2-901	1,8	3,6	2	1,8	5,6	2500	1800	66	2000
unipolar	KH86QM2-902	1,8	2,12	4,5	0,47	1,2	2500	1800	66	2000
unipolar	KH86RM2-901	1,8	4	2	2,1	7,5	3000	2300	74	2500
unipolar	KH86RM2-902	1,8	2,2	4,5	0,5	1,5	3000	2300	74	2500
unipolar	KH86TM2-901	1,8	5,6	2	2,8	11,5	4700	3700	96	3000
unipolar	KH86TM2-902	1,8	2,97	4,5	0,66	2,3	4700	3700	96	3000
unipolar	KH86WM2-901	1,8	7,6	2	3,8	17	6700	5500	127	4500
unipolar	KH86WM2-902	1,8	3,8	4	0,95	3,6	6700	5500	127	4500

HYBRIDS (3-Phase):

Compared to 2-phase motors, 3 phase stepper motor can provide more torque and it has a better performance in over-loading. When the load gains, 3 phase stepper motor will not stall easily, combined with a good dynamic property at the same time. As 3-phase motor has a smaller step angle than 2-phase motors, it moves more smoothly. Under the condition of having the same rotor teeth, 3-phase motors has less vibration and higher precision than 2-phase motors.

Advantages:

- Drive circuit is simplified because the motor is driven with star wiring connection.
- High torque is obtained at low speed with the microstep driver.
- Ultra-low vibration and low noise achieved with our microstep driver.
- The step angle of 1/1, 1/2, 1/4, and 1/8 may be chosen by using our micro-step driver.
- Our 3 phase stepper motor offers more excellent performance than the 5 phase stepper.
- Minimize the source of vibration. Unique tooth shape & small rotor diameter provide high-speed performance. Also superior High grade material rise electrical efficiency. High torque 2 phase stepping motor. A unique tooth profile. Micro step correspondence.

Dynetics B.V. De Rijn 12 5684PJ Best, The Netherlands Tel: +31-(0)499-371007 | Fax: +31-(0)499-372008

Dynetics GmbH Klostergasse 6 D-41334 Nettetal-Kaldenkirchen, Deutschland Tel : +49-(0)2157-128990 | Fax: +49-(0)2157-128999

e-Mail: info@dynetics.eu www.dynetics.eu

Hybrid Stepper motor (3 phase)

3-phase Hybrid	ł									
wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	v	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm ²	mm	g
bipolar	KT42EM06-551	0,6	5,3	0,9	5,9	3,1	45	20	20	140
bipolar	KT42HM06-551	0,6	2,88	2,4	1,2	0,8	90	42	34	210
bipolar	KT42JM06-551	0,6	3,12	2,4	1,3	1,3	180	60	40	310
bipolar	KT42KM06-551	0,6	4,6	2,3	2	1,4	200	85	50	360
wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	v	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm ²	mm	g
bipolar	KT60KM06-551	0,6	2,09	3,8	0,55	1	442	170	47	550
bipolar	KT60KM06-551	0,6	3,52	2,2	1,6	3	442	170	47	550
bipolar	KT60KM06-551	0,6	2,09	3,8	0,55	1	246	170	47	550
bipolar	KT60KM06-551	0,6	3,52	2,2	1,6	3,1	246	170	47	550
wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	v	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm ²	mm	g
bipolar	KT35FM1-552	1,2	10,8	0,3	36	26	58,9	8	28	110
wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	v	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm ²	mm	g
bipolar	KT42EM1-551	1,2	5,3	0,9	5,9	2,6	70	20	20	140
bipolar	KT42HM1-551	1,2	2,64	2,4	1,1	0,5	140	42	34	210
bipolar	KT42JM1-551	1,2	2,88	2,4	1,2	0,8	210	60	40	310
bipolar	KT42KM1-551	1,2	3,6	2,4	1,5	1	280	85	50	360
wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	v	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm ²	mm	g
bipolar	KT60LM1-551	1,2	2,77	3,8	0,73	1	600	265	58	720
bipolar	KT60LM1-552	1,2	4,84	2,2	2,2	3,3	600	265	58	720
bipolar	KT60RM1-551	1,2	6	3	2	3,2	1680	840	85,8	1340
wiring	Model	Step angle	Voltage	Current	Resistance	Inductance	Holding torque	Rotor inertia	Length	Mass
		Deg.	v	Α/Φ	Ω/Φ	mH/Φ	mN∙m	g.cm²	mm	g
bipolar	KT42EM4-551	3,75	5,28	0,8	6,6	5,7	70	20	20	140
bipolar	KT42HM4-551	3,75	4,42	1,3	3,4	4,7	130	38	34	210
bipolar	KT42HM4-552	3,75	7,04	0,8	8,8	12,3	130	38	34	210
bipolar	KT42JM4-551	3,75	5,16	1,2	4,3	8,7	180	60	40	240
hinolar	KT42JM4-552	3,75	8,8	0,8	11	22	180	60	40	240

Dynetics B.V. De Rijn 12 5684PJ Best, The Netherlands Tel: +31-(0)499-371007 | Fax: +31-(0)499-372008

Dynetics GmbH Klostergasse 6 D-41334 Nettetal-Kaldenkirchen, Deutschland Tel : +49-(0)2157-128990 | Fax: +49-(0)2157-128999

e-Mail: info@dynetics.eu www.dynetics.eu

Damper:

This Specially developed anti-vibration rubber is efficient in damping the vibrations as generated by the stepping motor. The damper will reduce the transfer on flame of vibration generated by stepped rotation of a stepper motor. Phenol resin adhesive was applied on metal part surface for cost reduction. (It has little antirust effects)

Reduce transfer on flame of vibration by stepped rotation of S/M.
Phenol resin adhesive was applied on metal part surface for cost reduction. (It has little antirust effects)
Prepared in-low type, positioning with motor is easy.

			Dime	nsions			Product code	Hardness	spring constant	load	spring constant
Motor size	Α	В	С	D	E	F		HS	A-direction (N)	A-direction (N)	B-direction (N)
42mm sq	31	8,8	1,6	5,6	ø23	M3-ø3,5	RF1400-A2	45	295	24	1570
42mm sq	31	8,8	1,6	5,6	ø23	M3-M3	RF2400-A2	45	295	24	1570
42mm sq	31	8,8	1,6	5,6	ø23	M3-ø3,5	RF1400-A5	60	490	41	2550
42mm sq	31	8,8	1,6	5,6	ø23	M3-M3	RF2400-A5	60	490	41	2550
42mm sq	31	6	1,6	2,8	ø23	M3-ø3,5	RF1401-A2	45	588	28	4410
42mm sq	31	6	1,6	2,8	ø23	M3-M3	RF2401-A2	45	588	28	4410
42mm sq	31	6	1,6	2,8	ø23	M3-ø3,5	RF1401-A5	60	980	45	7840
42mm sq	31	6	1,6	2,8	ø23	M3-M3	RF2402-A5	60	980	45	7840
56mm sq	47	10	2,3	5,4	ø40	M4-ø5	RF1500-A2	45	780	63	4410
56mm sq	47	10	2,3	5,4	ø40	M4-M4	RF2500-A2	45	780	63	4410
56mm sq	47	10	2,3	5,4	ø40	M4-ø5	RF1500-A5	60	1180	95	6860
56mm sq	47	10	2,3	5,4	ø40	M4-M4	RF2500-A5	60	1180	95	6860
60mm sq	50	10	2,3	5,4	ø40	M4-ø4,5	RF1600-A2	45	780	63	4410
60mm sq	50	10	2,3	5,4	ø40	M4-M4	RF2600-A2	45	780	63	4410
60mm sq	50	10	2,3	5,4	ø40	M4-ø4,5	RF1600-A5	60	1180	95	6860
60mm sq	50	10	2,3	5,4	ø40	M4-M4	RF2600-A5	60	1180	95	6860

300 400 500 600 7 DRIVE FREQUENCY(PPS)

700

800 900 1000

DYNAMIC DAMPER

RUBBER : N B R

Coil

An encapsulated and welded stator design gives stronger design, greater dimensional control and improved thermal characteristics.

Mounting Plate

Custom and standard shaped mounting plates are available. Mounting holes can be threaded, tapped, slotted or customized to your application requirements.

0

0 100 200

Permanent Magnet Rotor

Three types of permanent magnets are available: ferrite anisotropic, ferrite isotropic, and neodymium.

Bushings and Bearings

Long life oil-impregnated bushings are standard in our PF, PFC, NFC, PTM and PTMC motors. Ball bearings can be requested, and are standard in the PFL series Linearstep motors.

Dynetics B.V. De Rijn 12 5684PJ Best, The Netherlands Tel: +31-(0)499-371007 | Fax: +31-(0)499-372008

Dynetics GmbH Klostergasse 6 D-41334 Nettetal-Kaldenkirchen, Deutschland Tel : +49-(0)2157-128990 | Fax: +49-(0)2157-128999

e-Mail: info@dynetics.eu www.dynetics.eu

Shaft

A variety of shaft options are available.

- **Custom lengths** •
- Single and double shafts
- D-cut(s)
- Turn downs

- Threaded
- Knurled
- Grooved

Shaft Modifications

Flat(s)

Knurling

•

•

Threading

Pinion Gear (press fit, set screw or spring pin)

Extended Shaft

Double Shaft

Slot

Worm Gear

Gears & Pulleys

A variety of gear and pulley options are available.

- Machined
- Plastic molded
- Powdered metal (sintered)

Connector

Motor side connection method. Lead wire options available.

Lead Wire

Wire Leads

Options to change the lead wire exit direction and exit angle.

- Driver side connector options. •
- Standard flying leads •
- Customer-selected connectors

Additional Modifications

Plastic Tubing (regular or heat shrink)

Ball Bearings

Lead Length

Flange

Mesh Tubing

Stopper

Stepper motors require special circuits to drive them because of their complex construction. Dynetics offer cost effective high efficient electronics for driving and controlling stepping motors (please ask for our special brochure "electronics" or visit our website for further details

- Intelligent motors (with integrated electronics) •
- Encoders •

Linear motor & actuators

convert rotational motion into linear or straight push/pull movements. Linear actuators are optimal for many types of applications, like pulling or pushing and tilting, or lifting. Electric linear actuators are often the preferred solution for simple moving profile with an accurate precision and smooth motion control. We offer three versions: captive (with integrated twist-lock), non-captive; and external linear versions.

PFCL	PM-Linear stepper (LINEARSTEP®)	X
PFCL/captive	PM-Linear stepper captive (LINEARSTEP®)	
PJPL	Linear Hybrid stepper motor	
External Linear Actuator	Compact Unit product with Ball Screw and Motor combined without Coupling.	
External Ender Actation	 MB = C3 high prec. ball screw + 5-ph stepper 	
Ball Screws with integrated motors	TMB = rolled ball srew + 5-ph stepper	2.25
_	• 2TMB = Ct7 rolled ball screw + 2 ph stepper	
	SiMB = C3 high prec ball screw +servo motor	
	AR-type:Compact Cylinder with 2-phase Hollow Stepping Motor built in Ball Screw with	

	 AR-type:Compact Cylinder with 2-phase Hollow Stepping Motor built in Ball Screw with 			
Linear Actuator /cylinder (AR, CL =	Ball Spline (BSSP). Ball Spline Nut in BSSP plays a role of anti-rotating device, so slim			
captive series)	body became reality.			
	CL-type Cylinder without anti-rotating /captive device is also available			
	this is the 3-functional Actuator within one Unit, which is: Linear(Z), Rotary(θ ;Theta)and Vacuum(V).			
	You can choose Drive system and Motor type as well as Actuator size.			
VZB Actuator	Direct Drive			
V20 Actualor	Hybrid drive			
	Belt Drive	1 7		
	Belt Drive High speed			
	Super compact Actuators by making full use of advantages of miniature sized Ball Screw			
	manufacturer. There are Cylinder type and Slider type Actuator.			
Miniature Actuators (FAS)	• FAS-R = Rolled Ball Screw type			
	FAS-Re = Resin Lead Screw type			
	FAS-G = Precision Ball Screw type			
compact actuator NEMA 6 (CAS)	The most compact single axis actuator in KSS with NEMA 6 size of 2 phase stepping motor CAS = compact actuator	Cick P		

Linear captive actuators

The movable shaft doesn't rotate and the result is a pure linear motion

PFCL25-series Captive

- PM Captive Linear Stepper 25mm Size 48step 0.48mm Lead
- stroke length range 19mm
- Unipolar- or Bipolar windings

type of winding	Model	Step angle	Voltage	Resistance	Inductance	thrust/force	travel/step	stroke	Mass
		Deg.	v	Ω/Φ	mH/Φ	N	mm	mm	g
bipolar	PFCL25-48P4-048-19	7,5	12	122	73	26	0,01	19	60
bipolar	PFCL25-48Q4-048-19	7,5	5	15	8,7	26	0,01	19	60
unipolar	PFCL25-48C4-048-19	7,5	12	120	33	12,1	0,01	19	60
unipolar	PFCL25-48D4-048-19	7,5	5	16	4,5	12,1	0,01	19	60

AR / CL-Series captive:

- 2-phase Hybrid nema sized Stepping Motor 28mm or 42mm
- integrated with Ball Screw or Ball Screw with Ball Spline (BSSP.
- Stroke length range 40- and 50mm
- Bipolar windings

sq28mm 2ph hyb	orid captive (anti rotati	ng) linear st							
type of winding	Model	screw lead	Voltage	Resistance	repeatability	thrust/force	max speed	stroke	Mass
		mm	v	Ω/Φ	mm	N	mm/sec	mm	g
bipolar	DDAAR28-G01 040N	1	3,8	5,6	0,005	50	20	40	270
bipolar	PBAAR28-G01-040	1	3,8	5,6	0,005	50	20	40	270
bipolar	DDAAR28-G02 040N	2	3,8	5,6	0,005	25	40	40	270
bipolar	PBAAR28-G02 040N	2	3,8	5,6	0,005	25	40	40	270
sq42mm 2ph hyb	orid captive (anti rotati	ng) linear st	epper + pr	ecision ball s	screw				
type of winding	Model	screw lead	Voltage	Resistance	repeatability	thrust/force	max speed	stroke	Mass
		mm	v	Ω/Φ	mm	N	mm/sec	mm	g
bipolar	DDAAR42-G02 050N	2	2,5	2,1	0,005	80	40	50	660
bipolar	PBAAR42-G02 050N	2	2,5	2,1	0,005	80	40	50	660
bipolar	DDAAR42-G05 050N	5	2,5	2,1	0,005	30	100	50	660
bipolar	PBAAR42-G05 050N	5	2,5	2,1	0,005	30	100	50	660

PM-linear stepper PF(C)L series (LINEARSTEP)

is designed to provide a simple system at a fraction of the cost of a conventional rotary stepper motor. Offered in diameters of 20mm, 25mm and 35mm, the LINEARSTEP® series can also be ordered with one of three pitches on the lead thread screw (0.48mm, 0.96mm, and 1.2mm). The LINEARSTEP® series comes with either a bipolar or unipolar winding, and Captive and non-captive models are available. Easily controllable. ball-bearings support the low-friction screw for long product life

Screw Lead : 3 Types (0.48 mm, 0.96 mm, 1.20 mm)

Advantages of LinearStep Motors:

- Sizes available in 20mm, 25mm and 35mm diameters
- Captive and non-captive models available
- Easily controllable
- Additional winding options are available to meet application requirements
- Simple structure (threaded rotor hub and lead screw) ball-bearings support the low-friction screw for long product life

20mm Linear hybrid stepper motor

Ø20mm linear									
type of winding	Model	Step angle	Voltage	Resistance	Inductance	thrust/force	travel/step	stroke	Mass
		Deg.	v	Ω/Φ	mH/Φ	N	mm	mm	g
bipolar	PFL20-24Q4	15	5	33	12	6	0,05	30	31

25mm Linear hybrid stepper motor

Ø25mm linear									
type of winding	Model	Step angle	Voltage	Resistance	Inductance	thrust/force	travel/step	stroke	Mass
		Deg.	v	Ω/Φ	mH/Φ	N	mm	mm	g
bipolar	PFCL25-24P4-048-30	15	12	122	59	16	0,02	30	60
bipolar	PFCL25-24P4-048-60	15	12	122	59	16	0,02	60	60
bipolar	PFCL25-24P4-096-30	15	12	122	59	14	0,02	30	60
bipolar	PFCL25-24P4-096-60	15	12	122	59	14	0,02	60	60
bipolar	PFCL25-24P4-120-30	15	12	122	59	11	0,05	30	60
bipolar	PFCL25-24P4-120-60	15	12	122	59	11	0,05	60	60
bipolar	PFCL25-24Q4-048-30	15	5	15	7,1	16	0,02	30	60
bipolar	PFCL25-24Q4-048-60	15	5	15	7,1	16	0,02	60	60
bipolar	PFCL25-24Q4-096-30	15	5	15	7,1	14	0,04	30	60
bipolar	PFCL25-24Q4-096-60	15	5	15	7,1	14	0,04	60	60
bipolar	PFCL25-24Q4-120-30	15	5	15	7,1	11	0,05	30	60
bipolar	PFCL25-24Q4-120-60	15	5	15	7,1	11	0,05	60	60
bipolar	PFCL25-48P4-048-30	7,5	12	122	73	31	0,01	30	60
bipolar	PFCL25-48P4-048-60	7,5	12	122	73	31	0,01	60	60
bipolar	PFCL25-48P4-096-30	7,5	12	122	73	22,5	0,02	30	60
bipolar	PFCL25-48P4-096-60	7,5	12	122	73	22,5	0,02	60	60
bipolar	PFCL25-48P4-120-30	7,5	12	122	73	20,5	0,025	30	60
bipolar	PFCL25-48P4-120-60	7,5	12	122	73	20,5	0,025	60	60
bipolar	PFCL25-48Q4-048-30	7,5	5	15	8,7	31	0,01	30	60
bipolar	PFCL25-48Q4-048-60	7,5	5	15	8,7	31	0,01	60	60
bipolar	PFCL25-48Q4-096-30	7,5	5	15	8,7	22,5	0,02	30	60
bipolar	PFCL25-48Q4-096-60	7,5	5	15	8,7	22,5	0,02	60	60
bipolar	PFCL25-48Q4-120-30	7,5	5	15	8,7	20,5	0,025	30	60
bipolar	PFCL25-48Q4-120-60	7,5	5	15	8,7	20,5	0,025	60	60

25mm Linear hybrid stepper motor

type of winding	Model	Step angle	Voltage	Resistance	Inductance	thrust/force	travel/step	stroke	Mass
		Deg.	v	Ω/Φ	mH/Φ	N	mm	mm	g
unipolar	PFCL25-24C4-048-30	15	12	120	26,4	11	0,02	30	60
unipolar	PFCL25-24C4-048-60	15	12	120	26,4	11	0,02	60	60
unipolar	PFCL25-24C4-096-30	15	12	120	26,4	9,5	0,04	30	60
unipolar	PFCL25-24C4-096-60	15	12	120	26,4	9,5	0,04	60	60
unipolar	PFCL25-24C4-120-30	15	12	120	26,4	8	0,05	30	60
unipolar	PFCL25-24C4-120-60	15	12	120	26,4	8	0,05	60	60
unipolar	PFCL25-24D4-048-30	15	5	16	3,6	11	0,02	30	60
unipolar	PFCL25-24D4-048-60	15	5	16	3,6	11	0,02	60	60
unipolar	PFCL25-24D4-096-30	15	5	16	3,6	9,5	0,04	30	60
unipolar	PFCL25-24D4-096-60	15	5	16	3,6	9,5	0,04	60	60
unipolar	PFCL25-24D4-120-30	15	5	16	3,6	8	0,05	30	60
unipolar	PFCL25-24D4-120-60	15	5	16	3,6	8	0,05	60	60
unipolar	PFCL25-48C4-048-30	7,5	12	120	33	22	0,01	30	60
unipolar	PFCL25-48C4-048-60	7,5	12	120	33	22	0,01	60	60
unipolar	PFCL25-48C4-096-30	7,5	12	120	33	17,5	0,02	30	60
unipolar	PFCL25-48C4-096-60	7,5	12	120	33	17,5	0,02	60	60
unipolar	PFCL25-48C4-120-30	7,5	12	120	33	15	0,025	30	60
unipolar	PFCL25-48C4-120-60	7,5	12	120	33	15	0,025	60	60
unipolar	PFCL25-48D4-048-30	7,5	5	16	4,5	22	0,01	30	60
unipolar	PFCL25-48D4-048-60	7,5	5	16	4,5	22	0,01	60	60
unipolar	PFCL25-48D4-096-30	7,5	5	16	4,5	17,5	0,02	30	60
unipolar	PFCL25-48D4-096-60	7,5	5	16	4,5	17,5	0,02	60	60
unipolar	PFCL25-48D4-120-30	7,5	5	16	4,5	15	0,025	30	60
unipolar	PFCL25-48D4-120-60	7,5	5	16	4,5	15	0,025	60	60

X

35mm Linear hybrid stepper motor

Ø35mm linear									
type of winding	Model	Step angle	Voltage	Resistance	Inductance	thrust/force	travel/step	stroke	Mass
		Deg.	v	Ω/Φ	mH/Φ	N	mm	mm	g
bipolar	PFL35T-48Q4-048-30	7,5	5	16	6,4	39,5	0,01	30	95
bipolar	PFL35T-48Q4-048-60	7,5	5	16	6,4	39,5	0,01	60	95
bipolar	PFL35T-48Q4-096-30	7,5	5	16	6,4	38	0,02	30	95
bipolar	PFL35T-48Q4-096-60	7,5	5	16	6,4	38	0,02	60	95
bipolar	PFL35T-48Q4-120-30	7,5	5	16	6,4	35	0,025	30	95
bipolar	PFL35T-48Q4-120-60	7,5	5	16	6,4	35	0,025	60	95
bipolar	PFL35T-48R4-048-30	7,5	12	72	54	39,5	0,01	30	95
bipolar	PFL35T-48R4-048-60	7,5	12	72	54	39,5	0,01	60	95
bipolar	PFL35T-48R4-096-30	7,5	12	72	54	38	0,02	30	95
bipolar	PFL35T-48R4-096-60	7,5	12	72	54	38	0,02	60	95
bipolar	PFL35T-48R4-120-30	7,5	12	72	54	35	0,025	30	95
bipolar	PFL35T-48R4-120-60	7,5	12	72	54	35	0,025	60	95
unipolar	PFL35T-48C4-048-30	7,5	12	70	27	35	0,01	30	95
unipolar	PFL35T-48C4-048-60	7,5	12	70	27	35	0,01	60	95
unipolar	PFL35T-48C4-096-30	7,5	12	70	27	32	0,02	30	95
unipolar	PFL35T-48C4-096-60	7,5	12	70	27	32	0,02	60	95
unipolar	PFL35T-48C4-120-30	7,5	12	70	27	30	0,025	30	95
unipolar	PFL35T-48C4-120-60	7,5	12	70	27	30	0,025	60	95
unipolar	PFL35T-48D4-048-30	7,5	5	12	5	35	0,01	30	95
unipolar	PFL35T-48D4-048-60	7,5	5	12	5	35	0,01	60	95
unipolar	PFL35T-48D4-096-30	7,5	5	12	5	32	0,02	30	95
unipolar	PFL35T-48D4-096-60	7,5	5	12	5	32	0,02	60	95
unipolar	PFL35T-48D4-120-30	7,5	5	12	5	30	0,025	30	95
unipolar	PFL35T-48D4-120-60	7,5	5	12	5	30	0,025	60	95

Hybrid Stepper Motors with built-in ball screws

NPM PJPL-series hybrid linear motors are ideal for motion control applications where the benefits of smaller size with high force are essential. Offered in the sizes 28- and 42-mm, and as bipolar or unipolar winding. They feature superior response characteristics and function in a wide variety of applications

product code	PJPL2832E6(100)	PJPL2832E4(100)	PJPL4233D6(100)	PJPL4233D4(100)		
type of winding	unipolar	bipolar	unipolar	bipolar		
excitation mode		full ste	ep (2-2)			
resolution (travel/step)		0,0	005		mm	
steps per revolution		2	00			
stroke	40					
rated Voltage	2,66	2,57	2,8	2,5	V	
rated current	0,	95	1	A/Ø		
resistance	2,8	2,7	2,3	2,1	Ω	
inductance	1,2	2,1	2,1	3	mH/Ø	
operating temp.	min 10 to plus 50				°C	
insolation class	В					
insolation resistance	100				MΩ	
dielectric strength	500 (1 min.)					
weight	11	10	20	00	g	

Linear Actuator External type 2-phase Motor & Rolled Ball Screw type(2TMB)(2-phase Rolled MoBo)

Features

- 2-phase Stepping Motor is mounted directly onto the shaft end of a Ct7 grade Rolled Ball
 - Screw, which means compact and multipurpose type product.
- Ball Screw Shaft is ideally constructed to form the Motor Rotor Shaft.
- Since combining the Motor Shaft and Ball Screw Shaft, Coupling-less, saving total length and reducing labour cost can be achieved.
- Recommended Driver for 2-phase Stepping Motor is available.
- Flexible length can be provided by the end journal turning.
- Stable mounting is secured by the exclusive Support

Model	Shaft Nominal Dia.	Lead	Travel	Travel per pulse	Reference Thrust	Mass
	(mm)	(mm)	(mm)	(µm)	(N)	(g)
2TMB0801	\$	1	150	5	75	350
2TMB0802	ø 8	2	150	10	100	400
2TMB0805	ø 8	5	150	25	50	400
2TMB0812	\$	12	150	60	25	400

Linear Actuator External type Precision Ball Screw type(MB)(MoBo-series) Features:

- Dynetics
- 5-phase Stepping Motor is mounted directly onto the shaft end of a C3 grade precision Ball Screw, which is suitable for high accurate positioning system.
- Ball Screw Shaft is ideally constructed to form the Motor Rotor Shaft.
- Since combining the Motor Shaft and Ball Screw Shaft, Coupling-less, saving total length, low lost-motion can be achieved.
- Recommended Driver for 5-phase Stepping Motor is available. Accessories
- are also provided as mounting kit, such as Nut Block and Motor plate

Model	Shaft Nominal Dia.	Lead	Travel	Travel per pules	Reference Thrust	Mass
MB04005A	φ4	0.5	20	1	10	84
MB0401A	φ4	1	30	2	20	84
MB0401	φ4	1	30	2	50	100
MB0601	φδ	1	75	2	100	170
MB0602	φδ	2	75	4	50	180
MB0801	φ8	1	150	2	300	310
MB0802	φ8	2	150	4	150	320

Linear Actuator External type Rolled Ball Screw type (TMB) (Rolled MoBo) Features:

- 5-phase Stepping Motor is mounted directly onto the shaft end of a Ct7 grade Rolled Ball Screw, which is all-round performance drive unit.
- Ball Screw Shaft is ideally constructed to form the Motor Rotor Shaft.
- Since combining the Motor Shaft and Ball Screw Shaft, Coupling-less, saving total length, and reducing labour cost can be achieved.
- Recommended Driver for 5-phase Stepping Motor is available.
- Accessories are also provided as mounting kit, such as Nut block and Motor plate.

Model	Shaft Nominal Dia.	Lead	Travel	Travel per pules	Reference Thrust	Mass
	(mm)	(mm)	(mm)	(µm)	(N)	(g)
TMB0401	φ4	1	30	2	50	100
TMB0504	ø 5	4	75	8	25	180
TMB0601	¢ 6	1	75	2	100	180
TMB0602	¢ 6	2	75	4	50	180
TMB0606	¢ 6	6	75	12	15	180
TMB0801	¢ 8	1	150	2	300	320
TMB0802	¢ 8	2	150	4	150	320
TMB0805	¢ 8	5	150	10	120	450
TMB0812	¢ 8	12	150	24	50	450

Constant current drive:

With the fixed current drive method, a voltage sufficiently higher than the specified voltage, of the motor, is finely sliced in the switching circuit than applied to the motor coil. The current is maintained at a constant level whether the motor is rotating at low or high speed. With this method the output torque during high speed rotation is greatly improved with power consumption minimized

Micro-step driver:

With the micro-step drive method, the mechanically determined step angle (3.75°, 1.2° or 0.60°) is divided by an electronic circuit and the motor is gradually rotated by a fine angle. The conventional excitation method makes a rotor rotates by a fixed angle by turning the magnetizing phase on and off through an input pulse. On the other hand, with the micro-step driving method, the current of one phase of the magnetizing phase can be gradually increased while the current of other phase is decreased thereby further dividing the step angle of the motor and making rotation even smoother. THE FTD3S3P17 driver, the FTD3S2P22 enable to set to step divisions of 1/4 and 1/8. Micro stepping drive is effective to reduce mechanical driving noise particularly when divisions not exceeding 1/8

Self-starting region:

This is the region in which motors can be started and stopped instantaneously.

Pulse rate:

The number of pulses in a unit of time, and is shown in the unit "pps" which means" pulses per second". The relation between pulse rate, speed (rpm) and angular velocity (rad/s) is given below

$$\omega = \frac{\pi}{180} \ \theta \, \mathrm{s} \cdot \mathrm{P} \to \mathrm{P} = \frac{180}{\pi} \cdot \frac{\omega}{\theta \, \mathrm{s}}$$
$$\mathrm{N} = \frac{1}{6} \theta \, \mathrm{s} \cdot \mathrm{P} \to \mathrm{P} = \frac{6\mathrm{N}}{\theta \, \mathrm{s}}$$

where

ω : Angular velocity (rad/s)
θs : Step angle (deg.)
N : Speed (rpm)
P : Driving pulse rate (pps)

Slow acceleration/slow deceleration:

This is a kind of control to raise or lower the pulse rate to drive stepping motors in the slew region so they exhibit their full capability. There are various methods but one example, called trapezoidal driving, is shown in Fig. 2

Maximum self-starting frequency (pps):

This is the maximum pulse rate in the self-starting region. Care must be taken, because it varies depending on the load inertia. Slew region In this region, driving is possible only by slow acceleration/slow deceleration control. Maximum response frequency (pps) This is the maximum pulse rate in the slew region. Pull-in torque This is the torque generated when started in the self-starting region. It is also called the "synchronization torque". Pull-out torque This is the torque generated when driven in the slew region. Pull-out This means the motor is coming out of synchronized operation by being not able to follow the pulse signal from the pulse generator. Over-loading is the general cause, but noise (Electric/ Electro-magnetic) is also a cause in some cases.

Dynetics B.V. De Rijn 12 5684PJ Best, The Netherlands Tel: +31-(0)499-371007 | Fax: +31-(0)499-372008

Dynetics GmbH Klostergasse 6 D-41334 Nettetal-Kaldenkirchen, Deutschland Tel : +49-(0)2157-128990 | Fax: +49-(0)2157-128999

e-Mail: info@dynetics.eu www.dynetics.eu

PIEZOELECTRIC ACTUATORS

Dynetics

The WAVELLING [™] Technology developed and patented by TEKCELEO relies on the piezoelectric actuation technology using mechanical waves. This operating mode provides a high power density combined with good efficiency for small motors (<20W mechanical).

The motor has a very simple and purely mechanical structure (no winding) facilitating integration. Benefiting from its expertise, TEKCELEO has developed a range of piezoelectric motors incorporating speed/position sensors and torque sensors giving these motors outstanding properties for light weight robotics applications, haptic interfaces, low-energy electro-valves, mini metered dose pumps and optronic equipment control applications

- Light and compact design (built-in sensors)
- Pancake shape ultrasonic motor
- Stepper motors competitors (or direct drive high torque motors)
- High torque / low speed. No-reducer (direct drive)
- No-power supply holding torque (built-in brake)
- No electromagnetic disturbances
- Silent, vibration-free
- Modular design : it can be fitted into the very core of the mechanism
- 0.01° precision (depends on the sensor)
- Fast mechanical response <1ms
- Operating temperatures : -20 + 140°C
- High shocks and vibrations resistance (compact)
- Torque or speed control (depends on the built-in sensors)
- Very easy to control thanks to its responsiveness and its built-in sensors.

Our line of piezoelectric motors ranges from 20mm (for miniature motors) to 75mm diameters. We offers the following actuators, all of which allow non-magnetic configurations for MRI environments:

- WLG-75-R : Diameter 75mm (external casing diameter : 80,5 mm)
- WLG-30-R : Diameter 30 mm (external casing diameter : 33,9 mm)
- WLG-20-R : Diameter 20 mm (external casing diameter : 23,9 mm)

	Rated Power	Max Torque	Rated Torque	Max speed	Min Speed	Max standard Encoder precision	Non- magnetic version
WLG-75-R	12W	1,2 N.m	0,75 N.m	175 RPM	1 RPM	0,0156°	Yes
WLG-30-R	1.3W	100 mN.m	75 mN.m	250 RPM	1 RPM	0,0450°	Yes
WLG-20-R	0.55W	30 mN.m	20 mN.m	380 RPM	1 RPM	0,0625°	Yes

	WLG-75-R	WLG-75-R AMAG (Non-Magnetic)
No Load Speed	175 RPM	175 RPM
Nominal Speed	150 RPM	150 RPM
Max Torque	1.2 N.m	1.2 N.m
Nominal Torque	0.75 N.m	0.75 N.m
Holding Torque	1.5 N.m	1.5 N.m
Built-in encoder	Yes, optical with quadrature output	Yes, optical with quadrature output
Max Encoder Resolution	0,0156° / 273 μr	0,0156° / 273 μr
Possible Max encoder Resolution (custom)	0,0039° / 68 μr	0,0039° / 68 μr
Operating Voltage	24 VDC	24 VDC
Maximal Power Consumption	24 VDC/2.9 A	24 VDC/ 2.9 A
Weight	282 g	282 g
Operating Temperature	0°C – 45°C	0°C – 45°C
Connector	Molex ref. 87438-0843	Molex ref. 87438-0843
Max Radial Load	10 N	10 N
Max Axial Load Dynamics	10 N	10 N
Max Force for Press Fits	120 N	120 N
Shaft Concentrictiy	±0,04 mm	±0,04 mm

	WLG-30-R	WLG-30-R AMAG (Non-Magnetic)
No Load Speed	250 RPM	235 RPM
Nominal Speed	165 RPM	165 RPM
Max Torque	100 mN.m	100 mN.m
Nominal Torque	75 mN.m	65 mN.m
Holding Torque	125 mN.m	125 mN.m
Built-in encoder	Yes, optical with quadrature output	Yes, optical with quadrature output
Max Encoder Resolution	0,0450° / 789 μr	0,0450° / 789 μr
Possible Max encoder Resolution (custom)	0,0104° / 181 μr	0,0104° / 181 μr
Operating Voltage	7.5 VDC	7.5 VDC
Maximal Power Consumption	7.5 VDC/1.35 A	7.5 VDC/1.35 A
Weight	37,7 g	37,7 g
Operating Temperature	0°C – 60°C	0°C – 60°C
Connector	JST - SHR-08V-S-B	JST - SHR-08V-S-B
Max Radial Load	10 N	10 N
Max Axial Load Dynamics	2 N	2 N
Max Force for Press Fits	80 N	80 N
Shaft Concentrictiy	±0,075 mm	±0,075 mm

	WLG-20-R	WLG-20-R AMAG (Non-Magnetic)
No Load Speed	380 RPM	380 RPM
Nominal Speed	265 RPM	265 RPM
Max Torque	30 mN.m	30 mN.m
Nominal Torque	20 mN.m	20 mN.m
Holding Torque	40 mN.m	40 mN.m
Built-in encoder	Yes, optical with quadrature output	Yes, optical with quadrature output
Max Encoder Resolution	0,0625° / 1091 μr	0,0625° / 1091 μr
Possible Max encoder Resolution (custom)	0,0156° / 273 μr	0,0156° / 273 μr
Operating Voltage	9 VDC	9 VDC
Maximal Power Consumption	9 VDC/0.8 A	9 VDC/0.8 A
Weight	14 g	14 g
Operating Temperature	0°C – 45°C	0°C – 45°C
Connector	JST - SHR-08V-S-B	JST - SHR-08V-S-B
Max Radial Load	5 N	5 N
Max Axial Load Dynamics	1 N	1 N
Max Force for Press Fits	18 N	18 N
Shaft Concentrictiy	±0,2 mm	±0,2 mm

Controllers

Dynetics offers two types of Piezo controllers depending on the size of the motor. These controllers can be shared through license agreement for customers who want to incorporate the electronics into their own systems.

All our controller can directly control continuous movement with switches. For precise motion control it is necessary to use a micro-controller connected to the controller.

In our evaluation kit we offer specific STM32 microcontroller with embedded demo software for easily handle our motors. Software can be shared and/or customized on demand.

E aluation kit

Dynetics offers evaluation/starter kit in order to easily get started with WAVELLING® motor technology. These kits are available with all our range of motor, standard and non-magnetic. They are delivered with the following items : _

- One motor ;
- One controller and its power supply;
- One STM32 Microcontroller;
- Free demo software to get started ;
- _ A heat dissipation plate ;

Evaluation kit are made to learn how to handle our motor and comes with technical support. Our customer can always summon a technical meeting to discuss how to control and set up our motor.

Compact drive technology, ventilation and cooling

All for dreams

Brushless DC Motors

near Motors

D>TSUKASA

DYNETICS B.V.

De Rijn 12 5684 PJ Best, Netherlands Phone: +31 499 371007 Fax: +31 499 372008 e-mail: info@dynetics.eu

stepper motors

Hybrid, PM, tin-can low vibration, low noise Compact design up to 50 Nm, linearstep, 2 & 3-phase versions 0.6°-3.75° step angle, integrated driver electronics Manufacturers: Nidec Servo, Shinano Kenshi, NPM, KSS

Stepper and BLDC motor controller / driver boards and modules

Single & Multi axes 2,3,4 & 5 phases unipolar, bipolar Up to 4 axes, microstep, up to 8A. Various communication Fieldbus (CANopen, MODBUS) Ethernet, RS485, USB Manufacturers: Nidec Servo, SHS, NPM, Panasonic, Synapticon

Brushed motors and geared motors

Torque up to 35Nm Manufacturers: Nidec Servo, Tsukasa, 3P

Brushless Motors and gears

Outside, or inside runners; Optionally with integrated driver electronics Manufacturers: Nidec, Tsukasa, 3P, Mellor

Motors with ironless rotor and gearbox

Brushed, or brushless 0.4-46W torque to 20Nm planetary gear Manufacturers: E-DriveSystem

Piëzomotoren

10 to 150 mm, up to 3Nm, noiseless, short response time integrated speed / position torque sensors Manufacturers: Tekceleo

Linear servo motors / Electric cylinders and stages

Ultra-precise, Dynamic, Stable. Height reproducibility, compact direct drive. Maintenance and cogging free shaft diameter from 4mm to 100mm stroke from 20mm to 4600mm captive / noncaptive. Top thrust force up to 10kN; Manufacturer: NPM, KSS

AC geared motors

Shaded pole & EC motors Motors up to 90W torque up to 30Nm Manufacturer: Nidec Servo, Mellor, DKM

Fans and blowers

Reliable, Ball bearing / sleeve bearing Lifetime up to 100,000 hours. Tested to VDE / UL / CSA IP54-65 versions Manufacturer: Nidec Servo, Nidec, Dynetics

Embedded IC's

One-chip stepper motor driver ICs, programmable pulse generators, integrated homing, anti-feedback, S-curve. Reduces engine noise Linear spiral, helical / circular interpolation

Manufacturer: Nippon Pulse

Linear Lead & Ball Screw Linear bearings & Guides

High accuracy, minimal friction, integr. Ball feedback, high rigidity, smooth running Manufacturer: KSS

DYNETICS GmbH

Klostergasse 6 D-41334 Nettetal-Kaldenkirchen, Deutschland Phone: +49 2157 128990 Fax: +49 2157 128999 e-mail: info@dynetics.eu

